ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65703
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства касательной ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Автор: Обухов Б.

Внутри равнобокой трапеции ABCD с основаниями BC и AD расположена окружность ω с центром I, касающаяся отрезков AB, CD и DA. Описанная окружность треугольника BIC вторично пересекает сторону AB в точке E. Докажите, что прямая CE касается окружности ω.

Решение

Заметим, что точка I лежит на оси симметрии трапеции.  Пользуясь этим, а также вписанностью четырёхугольника CBEI, получаем
ICD = ∠IBA = ∠IBE = ∠ICE.  Так как прямая CD касается окружности ω, то и прямая CE, симметричная ей относительно CI, также касается ω.

Замечания

Есть и другие решения, например, с использованием равенств  ∠IEA = ∠ICB = ∠IBC = ∠IEC.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2015/2016
этап
Вариант 4
класс
Класс 10
задача
Номер 10.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .