ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65718
Темы:    [ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В квадрате 10×10 все клетки левого верхнего квадрата 5×5 закрашены чёрным цветом, а остальные клетки – белым. На какое наибольшее количество многоугольников можно разрезать (по границам клеток) этот квадрат так, чтобы в каждом многоугольнике чёрных клеток было в три раза меньше, чем белых? (Многоугольники не обязаны быть равными или даже равновеликими.)

Решение

В каждом многоугольнике разбиения должны быть клетки обоих цветов. Значит, в нём должна быть чёрная клетка, граничащая с белой. Но таких клеток всего 9. Пример разрезания на 9 многоугольников см. на рисунке.


Ответ

На 9 многоугольников.

Замечания

8-9 кл. – 5 баллов, 10-11 кл. – 4 балла.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2015/16
Номер 37
вариант
Вариант весенний тур, базовый вариант, 8-9 класс
задача
Номер 4
олимпиада
Название Турнир городов
Турнир
Дата 2015/16
Номер 37
вариант
Вариант весенний тур, базовый вариант, 10-11 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .