|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать? |
Задача 65772
УсловиеВ треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол. РешениеПусть треугольник упал так, что обход от A к B и далее к C осуществляется против часовой стрелки. Проведём через вершину A прямую, идущую строго с юга на север. Событие "Вершина A восточнее двух других" осуществляется тогда и только тогда, когда вершины B и C расположены в западной полуплоскости от проведённой прямой. На рисунке показаны два крайних положения треугольника, при которых вершины B и C не расположены в восточной полуплоскости. Видно, что луч AB должен проходить внутри закрашенного угла, который является внешним к углу A треугольника. Следовательно, вероятность этого события равна (180 – 40) : 360 = 7/18. Ответ7/18. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|