ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 66150
УсловиеСуществует ли такая бесконечная возрастающая последовательность a1, a2, a3, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности? Решение Положим a1 = 1, an+1 = (3an)! + 1. Заметим, что все эти числа нечётны. Для того, чтобы показать, что эта последовательность удовлетворяет требованиям, нам придётся эти требования несколько усилить. Будем говорить, что пара (тройка) чисел хорошая, если все её элементы, отличные от единицы, различны (а единица может встретиться в ней несколько раз). Докажем следующее утверждение. ОтветСуществует. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|