ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66152
Темы:    [ Квадратный трехчлен (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Автор: Храбров А.

Верно ли, что для любых трёх различных натуральных чисел a, b и c найдётся квадратный трёхчлен с целыми коэффициентами и положительным старшим коэффициентом, принимающий в некоторых целых точках значения a³, b³ и c³?


Решение

Рассмотрим трёхчлен  f(x) = (a + b + c)x² – (ab + bc + ca)x + abc = x³ – (x – a)(x – b)(x – c).   f(a) = a³ – 0 = a³;  аналогично  f(b) = b³  и  f(c) = c³.


Ответ

Верно.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2016/2017
этап
Вариант 5
класс
Класс 9
задача
Номер 9.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .