ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66605
Темы:    [ Теория чисел. Делимость ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.

Ответ

Например, $900\,900\,000$.

Примечание. На самом деле существует $28\,573$ числа, удовлетворяющих условиям задачи, наименьшее из которых равно $100\,006\,020$, а наибольшее $999\,993\,240$.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2019
Номер 82
класс
1
Класс 10
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .