Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66645
Темы:    [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Четырехугольник ABCD вписан в окружность. По дуге AD, не содержащей точек B и C, движется точка P. Фиксированная прямая l, перпендикулярная прямой BC, пересекает лучи BP, CP в точках B0, C0 соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника PB0C0 в точке P, проходит через фиксированную точку.

Решение

Пусть Q – вторая точка пересечения касательной с описанной окружностью четырехугольника. Тогда (см. рис.) BPQ=B0C0P=90BCP=90BQP. Следовательно, PBQ=90, т.е. PQ – диаметр окружности ABCD. Таким образом, все касательные проходят через центр окружности.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2018
Заочный тур
задача
Номер 4 [8 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .