Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66914
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Четырехугольник ABCD – вписанный. Окружность, проходящая через точки A и B, пересекает диагонали AC и BD в точках E и F соответственно. Пусть прямые AF и BC пересекаются в точке P, а прямые BE и AD – в точке Q. Докажите, что PQ параллельна CD.

Решение

Из вписанности четырехугольников ABCD и ABEF получаем, что CBD=CAD и EBF=EAF. Значит, PBQ=PAQ, т.е. четырехугольник ABPQ тоже вписанный. Следовательно, прямые CD и PQ параллельны, так как обе они антипараллельны AB относительно прямых AP и BQ.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2020
Заочный тур
задача
Номер 2 [8 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .