ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66929
Темы:    [ Инверсия (прочее) ]
[ Радикальная ось ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Автор: Казаков А.

Хорды $A_1A_2$ и $B_1B_2$ пересекаются в точке $D$. Прямая $A_1B_1$ пересекает серединный перпендикуляр к отрезку $DD'$, где точка $D'$ инверсна к $D$, в точке $C$. Докажите, что $CD\parallel A_2B_2$.

Решение

Так как $C$ лежит на радикальной оси данной окружности и точки $D$, $CD^2=CB_1\cdot CA_1$, следовательно, $\angle CDB_1=\angle DA_1C=\angle A_2B_2D$.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2020
Заочный тур
задача
Номер 17 [10-11 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .