ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 67012
УсловиеНезнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30? Решение$\frac{20}{2-\sqrt{2}}=\frac{20(2+\sqrt{2})}{2}=20+10\sqrt{2}>20+10.$
Есть и другие решения.
ОтветМожет. ЗамечанияС помощью вычитания, деления и извлечения квадратного корня из чисел $20$, $2$ и $2$ можно получить сколь угодно большое число, взяв дробь $\frac{20}{\sqrt[2^n]{2} - \sqrt[2^{n+1}]{2}}$ при достаточно большом $n$.Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке