ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 76422
Условие
Высота усечённого конуса равна радиусу его большего основания;
периметр правильного шестиугольника, описанного около меньшего основания, равен
периметру равностороннего треугольника, вписанного в большее основание.
Определить угол наклона образующей конуса к плоскости основания.
РешениеПусть R — радиус окружности большего основания, r — радиус окружности
меньшего основания. Периметр правильного шестиугольника, описанного около
меньшего основания, равен
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке