ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 76424
Тема:    [ Отношения линейных элементов подобных треугольников ]
Сложность: 2+
Классы: 9
В корзину
Прислать комментарий

Условие

В треугольнике ABC из произвольной точки D на стороне AB проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC.


Решение

Радиусы (а значит, и длины) описанных окружностей подобных треугольников ADG, DBF и ABC пропорциональны соответственным сторонам, поэтому все следует из равенства  AD + DB = AB.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 1
Год 1935
вариант
Вариант 4
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .