ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 76427
Тема:    [ Задачи на максимум и минимум (прочее) ]
Сложность: 3+
Классы: 10,11
В корзину
Прислать комментарий

Условие

На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных.

Решение

Множество точек, из которых диагональ куба видна под углом 90o, представляет собой описанную сферу куба (концы диагонали исключены). Пересечение этого множества с поверхностью куба состоит из 6 точек, отличных от концов данной диагонали. Все остальные точки поверхности куба лежат строго внутри описанной сферы, поэтому из них диагональ видна под тупым углом.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 1
Год 1935
вариант
Тур 2
Серия A
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .