ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 76545
Тема:    [ Взвешивания ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

Некоторые из 20 металлических кубиков, одинаковых по размерам и внешнему виду, алюминиевые, остальные (Предполагается, что все кубики могут быть алюминиевыми, но они не могут быть все дюралевыми (если все кубики окажутся одного веса, то нельзя выяснить, алюминиевые они или дюралевые) — прим. ред.) дюралевые (более тяжёлые). Как при помощи 11 взвешиваний на весах с 2-мя чашечками без гирь определить число дюралевых кубиков?

Решение

Положим на чашечки весов по одному кубику. Возможны два случая. При первом взвешивании один из кубиков оказался тяжелее. В этом случае один выбранный кубик алюминиевый, а другой дюралевый. Положим выбранные кубики на одну чашечку и будем с ними сравнивать остальные кубики. А именно, оставшиеся 18 кубиков разбиваем на 9 пар и поочерёдно кладём их на другую чашечку. Каждый раз мы узнаём, сколько в паре дюралевых кубиков. Действительно, если эталонная пара легче, то мы положили два дюралевых кубика; если эталонная пара имеет тот же самый вес, то мы положили один алюминиевый и один дюралевый кубик; если эталонная пара тяжелее, то мы положили два алюминиевых кубика. Таким образом, в первом случае достаточно 10 взвешиваний. При первом взвешивании кубики оказались равного веса.

В этом случае либо оба выбранных кубика алюминиевые, либо оба дюралевые. Положим выбранные кубики на одну чашечку и будем последовательно с ними сравнивать остальные кубики. Пусть первые k пар оказались того же самого веса, а (k + 1)-я пара оказалась другого веса. (Если k = 9, то все кубики одного веса, поэтому дюралевых кубиков нет.) Пусть для определённости (k + 1)-я пара оказалась более тяжёлой. Тогда первые два кубика и кубики первых k пар алюминиевые. Положим на каждую чашку весов по одному кубику (k + 1)-й пары. Если эти кубики одного веса, то они оба дюралевые. Если кубики разного веса, то один алюминиевый, а другой дюралевый. В обоих случаях мы можем составить пару кубиков, один из которых алюминиевый, а другой дюралевый. Оставшиеся пары кубиков мы можем сравнивать с этой парой, как и в первом случае. Общее число взвешиваний во втором случае равно 11.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 10
Год 1947
вариант
Класс 7,8
Тур 2
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .