ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 77926
Тема:    [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

Имеется кусок цепи из 150 звеньев, каждое из которых весит 1 г. Какое наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно было составить все веса в 1 г, 2 г, 3 г, ..., 150 г (раскованное звено весит тоже 1 г)?

Решение

Ответ: 4 звена. Согласно решению задачи 5 для 7-8 классов для цепи, состоящей из n звеньев, где 64$ \le$n$ \le$159, достаточно расковать 4 звена.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 14
Год 1951
вариант
Класс 9,10
Тур 1
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .