ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78030
Темы:    [ ГМТ с ненулевой площадью ]
[ Четырехугольники ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Дан четырехугольник ABCD. На стороне AB взята точка K, на стороне BC &8212; точка L, на стороне CD — точка M и на стороне AD — точка N, так, что KB = BL = a, MD = DN = b. Пусть KL $ \nparallel$ MN. Найти геометрическое место точек пересечения прямых KL и MN при изменении a и b.

Решение

Ответ: внутренность параллелограмма (см. рис.).

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 18
Год 1955
вариант
Класс 8
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .