ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78552
Темы:    [ Принцип Дирихле (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.


Решение

См. задачу 35512.

Источники и прецеденты использования

олимпиада
Название Белорусские республиканские математические олимпиады
олимпиада
Год 1966
Название 16-я Белорусская республиканская математическая олимпиада
Номер 16
неизвестно
Название Задача 8.5
кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 8
Название Принцип Дирихле
Тема Принцип Дирихле
задача
Номер 8.6
олимпиада
Название Московская математическая олимпиада
год
Номер 28
Год 1965
вариант
1
Класс 8
Тур 1
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .