ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 79269
Условие
Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника,
площадь каждого из которых больше 1.
РешениеПредположим, что в круг радиуса 1 помещены два треугольника, площадь которых больше 1. Достаточно доказать, что оба треугольника содержат центр O круга. Докажем, что если треугольник ABC, помещённый в круг радиуса 1, не содержит центра круга, то его площадь меньше 1. В самом деле, для любой точки, лежащей вне треугольника, найдётся прямая, проходящая через две вершины и отделяющая эту точку от третьей вершины. Пусть для определённости прямая AB разделяет точки C и O. Тогда hc < 1 и AB < 2, поэтому S = hc . AB/2 < 1. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке