ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79354
Темы:    [ Свойства суммы, разности векторов и произведения вектора на число ]
[ Принцип крайнего (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3+
Классы: 10
В корзину
Прислать комментарий

Условие

Существует ли на плоскости конечный набор различных векторов $ \overrightarrow{a_1}$, $ \overrightarrow{a_2}$, ..., $ \overrightarrow{a_n}$ такой, что для любой пары различных векторов из этого набора найдётся такая другая пара из этого набора, что суммы каждой из пар равны между собой?

Решение

Ответ: нет, не существует. Пусть $ \overrightarrow{a_1}$, $ \overrightarrow{a_2}$, ..., $ \overrightarrow{a_n}$ — различные векторы. Выберем ось Ox так, чтобы проекции этих векторов на неё были различны. Тогда сумма двух векторов с максимальными координатами не может быть равна сумме двух других векторов.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 41
Год 1978
вариант
Класс 9
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .