ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите неравенство   (a + b + c + d + 1)² ≥ 4(a² + b² + c² + d²)  при  a, b, c, d ∈ [0, 1].

Вниз   Решение


Сферы с центрами в точках O1 и O2 радиусов 3 и 1 соответственно касаются друг друга. Через точку M , удалённую от O2 на расстояние 3 , проведены две прямые, каждая из которых касается обеих сфер, причём точки касания лежат на прямых по одну сторону от точки M . Найдите угол между касательными, если известно, что одна из них образует с прямой O1O2 угол 45o .

Вверх   Решение

Задача 79377
Темы:    [ Выпуклые многоугольники ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.

Решение

Пусть стороны выпуклого n-угольника лежат на диагоналях данного 100-угольника. Для каждой стороны n - угольника рассмотрим диагональ, на которой она лежит, и отметим её концы. Всего будет отмечено 2n точек. Из каждой вершины данного 100-угольника выходит не более двух таких диагоналей, поэтому каждая вершина отмечена не более двух раз. Следовательно, 2n ≤ 2 · 100, т.е. n ≤ 100.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 43
Год 1980
вариант
Класс 7
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .