ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Окружности S1 и S2 пересекаются в точках A и P.
Через точку A проведена касательная AB к окружности S1,
а через точку P — прямая CD, параллельная AB (точки B
и C лежат на S2, точка D — на S1). Докажите,
что ABCD — параллелограмм.
|
Задача 79407
Условие
В квадрате ABCD находятся 5 точек. Доказать, что расстояние между какими-то
двумя из них не превосходит
РешениеПроведя через центр квадрата прямые, параллельные его сторонам, разрежем квадрат на 4 одинаковых квадрата. Какие-то 2 из 5 точек лежат в одном из этих квадратов, и расстояние между ними не превосходит длины диагонали этого квадрата. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке