ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 88002
Темы:    [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 2+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

Незнайка взял у Пилюлькина книжку и сосчитал, сколько понадобилось цифр, чтобы пронумеровать все страницы, начиная с первой. У него получилось 100 цифр. Могло ли так быть, или Незнайка ошибся? Если могло, скажите, сколько было страниц.


Подсказка

Заметьте, номер последней страницы – двузначное число.


Решение

При этих условиях номер последней страницы – двузначное число (количество цифр во всех двузначных и однозначных числах равно  9 + 90×2 > 100). Но все однозначные страницы дадут 9 цифр, то есть нечётное число, а добавление любого количества страниц с двузначным номером прибавит чётное число цифр, то есть оставит количество цифр нечётным.


Ответ

Незнайка ошибся.

Источники и прецеденты использования

книга
Автор Козлова Е.Г.
Название Сказки и подсказки
задача
Номер 70

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .