ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 88122
Темы:    [ Числовые таблицы и их свойства ]
[ Признаки делимости на 3 и 9 ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

В клетках таблицы 5×5 стоят ненулевые цифры. В каждой строке и в каждом столбце из всех стоящих там цифр составлены десять пятизначных чисел. Может ли оказаться, что из всех этих чисел ровно одно не делится на 3?


Подсказка

Вспомните признак делимости на 3.


Решение

Если число делится на 3, то сумма его цифр делится на 3. Пусть, для определённости, не делящееся на 3 число стоит в верхней строке. Тогда сумма всех цифр в каждом столбце делится на 3. Значит, сумма всех цифр в таблице делится на 3. Вычтем из этой суммы сумму цифр четырёх чисел, стоящих в строках 2-5. Результат делится на 3, поскольку все вычитаемые делятся на 3. Но, с другой стороны, это и есть сумма цифр, стоящих в верхней строке. Противоречие.


Ответ

Не может.

Источники и прецеденты использования

книга
Автор Козлова Е.Г.
Название Сказки и подсказки
задача
Номер 190

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .