ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 88187
Темы:    [ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 3
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

На клетке b8 шахматной доски написано число –1, а на всех остальных клетках число 1. Разрешается одновременно менять знак во всех клетках одной вертикали или одной горизонтали. Докажите, что сколько бы раз мы это ни проделывали, невозможно добиться, чтобы все числа в таблице стали положительными.


Подсказка

Обратите внимание: при перемене знаков в строке или столбце произведение всех чисел в таблице не меняется.


Решение

Поскольку мы меняем знаки каждый раз в восьми клетках, то произведение всех чисел в таблице не меняется. А раз в начале оно было отрицательным, то стать положительным оно не сможет.

Замечания

Ср. с задачей 30755.

Источники и прецеденты использования

книга
Автор Козлова Е.Г.
Название Сказки и подсказки
задача
Номер 255
кружок
Место проведения МЦНМО
класс
Класс 6
год
Год 2004/2005
занятие
Номер 3
задача
Номер 3.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .