ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98050
Темы:    [ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Фомин Д.

Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 200 граммов. Такой набор называется правильным, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 200, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладётся на одну чашку весов, гири - на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).
  а) Приведите пример правильного набора, в котором не все гири по одному грамму.
  б) Сколько существует различных правильных наборов?
(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)


Решение

Правильный набор должен соответствовать разложению на множители числа 201 (см. решение задачи 98056), а оно раскладывается только на два множителя:  201 = 3·67.


Ответ

а) Две гири по 67 г и 66 гирь по 1 г или 66 гирь по 3 г и две – по 1 г.
б) 3 набора.

Замечания

баллы: 4 + 8

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1989/1990
Номер 11
вариант
Вариант весенний тур, основной вариант, 8-9 класс
Задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .