ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 98250
УсловиеТри кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку
(если A прыгает через B в точку A1, то AB = BA1). Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики. РешениеПусть кузнечики сидят на координатной оси в точках –1, 0, 1. Заметим, что в результате каждого прыжка координата кузнечика остаётся целой. Кроме того, кузнечик при прыжке перемещается всегда на чётное расстояние. Отсюда следует, что если координата кузнечика вначале была чётной, то она и всегда останется чётной. Следовательно, через некоторое время средний кузнечик вернулся на своё начальное место – в точку 0. Замечания3 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|