ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 98616
УсловиеВ однокруговом турнире участвовали 15 команд. Решениеa) Первый способ. Сложим эти суммы для всех игр. Каждая из 15 команд вносит в результат нечётный вклад: 0 + 1 + 2 + ... + 13. Значит, в результате получится нечётное число. Следовательно, хотя бы одно из слагаемых-сумм было нечётным. Второй способ. Предположим противное: все игры делятся на чётные (к которым обе команды подошли с чётным "багажом") и нечётные. Каждая команда участвовала в семи чётных играх, значит, всего чётных игр 15·7 : 2 – нецелое число. Противоречие. б) Первый способ. Покажем, что если расписание турнира с одной "нечётной" игрой возможно для n команд, то оно возможно и для n + 4 команд. После проведения турнира n старых команд, добавим новые команды A, B, C и D. Проведём игры A-B, C-D, A-C, B-D и A-D. Команды A и B сыграли разное по чётности число игр (3 и 2), поэтому одна из старых команд S может сыграть с ними (в том или другом порядке). После этого S может сыграть с командами C и D. При этом все новые сыграют по разу, то есть разные чётности в парах A и B, C и D сохранятся. Поэтому можно повторять процедуру с каждой из остальных старых команд, а в конце провести заключительный матч B-C. Второй способ. Предположим, что команда 15 прибывает с опозданием, а турнир начинают команды с номерами от 1 до 14. Они проводят первые 12 туров обычного однокругового турнира в 13 туров. В каждом туре играют между собой команды, сыгравшие до этого одинаковое количество игр, так что желаемая сумма всегда будет чётной. Пусть команда 15 прибывает после того, как сыграны первые три игры 13-го тура. На этот момент восемь команд (группа A) сыграли по 12 игр, а шесть (группа B) – по 13. Теперь команда 15 играет против команд из групп A и B поочередно, пока не сыграет с семью командами из A. Желаемая сумма в каждой из этих 13 игр чётна. Затем команда 14 играет с восьмой командой из A, при этом сумма нечётна. После этого проходят оставшиеся четыре игры 13-го тура, каждая с чётной суммой. Ответб) Могла. Замечаниябаллы: 4 + 3 Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|