ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98830
Тема:    [ Нерекурсивная генерация объектов ]
Сложность: 3+
Классы:
В корзину
Прислать комментарий

Условие

Перечислить все разбиения целого положительного числа n на целые положительные слагаемые (разбиения, отличающиеся лишь порядком слагаемых, считаются за одно). (Пример: n=4, разбиения 1+1+1+1, 2+1+1, 2+2, 3+14.)

Решение

Договоримся, что (1) в разбиениях слагаемые идут в невозрастающем порядке, (2) сами разбиения мы перечисляем в лексикографическом порядке. Разбиение храним в начале массива x[1]..x[n], при этом количество входящих в него чисел обозначим k. В начале x[1]=...=x[n]=1, k=n, в конце x[1]=n, k=1. В каком случае x[s] можно увеличить, не меняя предыдущих? Во-первых, должно быть x[s-1]>x[s] или s=1. Во-вторых, s должно быть не последним элементом (увеличение s надо компенсировать уменьшением следующих). Увеличив s, все следующие элементы надо взять минимально возможными.

        s := k - 1;
        while not ((s=1) or (x[s-1] > x[s])) do begin
        | s := s-1;
        end;
        {s - подлежащее увеличению слагаемое}
        x [s] := x[s] + 1;
        sum := 0;
        for i := s+1 to k do begin
        | sum := sum + x[i];
        end;
        {sum - сумма членов, стоявших после x[s]}
        for i := 1 to sum-1 do begin
        | x [s+i] := 1;
        end;
        k := s+sum-1;

Источники и прецеденты использования

книга
Автор А.Шень
Название Программирование: теоремы и задачи
Издательство МЦНМО
Издание второе
Год издания 2004
глава
Номер 2
Название Порождение комбинаторных объектов
параграф
Номер 4
Название Разбиения
задача
Номер 2.4.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .