ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

На плоскости нарисованы две окружности (см. рис.). Существует ли некоторая точка, лежащая вне каждой из этих окружностей, для которой любая прямая, проходящая через неё, пересекает хотя бы одну из окружностей?

Задача 2

Из Москвы вылетел вертолёт, который пролетел 300 км на юг, потом 300 км на запад, 300 км на север и 300 км на восток, после чего приземлился. Оказался ли он южнее Москвы, севернее её или на той же широте? Оказался ли он восточнее Москвы, западнее Москвы или на той же долготе?

Задача 3

В банде 50 бандитов. Все вместе они ни в одной разборке ни разу не участвовали, а каждые двое встречались на разборках ровно по разу. Докажите, что один из бандитов был не менее, чем на восьми разборках.

Задача 4

Докажите, что при любых натуральных  0 < k < m < n  числа    и    не взаимно просты.

Задача 5

Можно ли раскрасить все точки квадрата и круга в чёрный и белый цвета так, чтобы множества белых точек этих фигур были подобны друг другу и множества чёрных точек также были подобны друг другу (возможно, с различными коэффициентами подобия)?


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .