Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Имеется полоска 1×99, разбитая на 99 клеток 1×1, которые раскрашены через одну в чёрный и белый цвет. Разрешается перекрашивать одновременно все клетки любого клетчатого прямоугольника 1×k. За какое наименьшее число перекрашиваний можно сделать всю полоску одноцветной?

Задача 2

Задача 3

Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
По какой траектории движется середина этого отрезка?

Задача 4

Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

Задача 5

Точку внутри квадрата соединили с вершинами – получились четыре треугольника, один из которых равнобедренный с углами при основании (стороне квадрата) 15°. Докажите, что противоположный ему треугольник правильный.


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .