ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец  — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы?

Задача 2

На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.

Задача 3

Лист железа треугольной формы весит 900 г.
Доказать, что любая прямая, проходящая через его центр тяжести, делит треугольник на части, каждая из которых весит не менее 400 г.

Задача 4

На координатной плоскости xOy построена парабола  y = x².  Затем начало координат и оси стёрли.
Как их восстановить с помощью циркуля и линейки (используя имеющуюся параболу)?

Задача 5

В автобусе n мест, и все билеты проданы n пассажирам. Первым в автобус заходит Рассеянный Учёный и, не посмотрев на билет, занимает первое попавшееся место. Далее пассажиры входят по одному. Если вошедший видит, что его место свободно, он занимает свое место. Если же место занято, то вошедший занимает первое попавшееся свободное место. Найдите вероятность того, что пассажир, вошедший последним, займет место согласно своему билету?


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .