ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подборка задач

Задача 1

Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?

Задача 2

Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?

Задача 3

Даны три приведённых квадратных трехчлена:  P1(x), P2(x) и P3(x). Докажите, что уравнение  |P1(x)| + |P2(x)| = |P3(x)|  имеет не более восьми корней.

Задача 4

Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Доказать, что если n > 4, то его можно деформировать в треугольник.

Задача 5

За круглым столом сидят n человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .