ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Азов Д.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 97805

Темы:   [ Целочисленные решетки (прочее) ]
[ Выигрышные и проигрышные позиции ]
Сложность: 5+
Классы: 9,10

Автор: Азов Д.Г.

   а) На бесконечном листе клетчатой бумаги двое играют в такую игру: первый окрашивает произвольную клетку в красный цвет; второй окрашивает произвольную неокрашенную клетку в синий цвет; затем первый окрашивает произвольную неокрашенную клетку в красный цвет, а второй еще одну неокрашенную клетку в синий цвет и т. д. Первый стремится к тому, чтобы центры каких-то четырёх красных клеток образовали квадрат со сторонами, параллельными линиям сетки, а второй хочет ему помешать. Может ли выиграть первый игрок?
   б) Каков будет ответ на этот вопрос, если второй игрок закрашивает синим цветом сразу по две клетки?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .