ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 64927

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 5,6

К некоторому числу прибавили его сумму цифр и получили 2014. Приведите пример такого числа.

Прислать комментарий     Решение

Задача 64942

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 8,9

Графики трёх функций  y = ax + a,  y = bx + b  и  y = cx + d  имеют общую точку, причём  a ≠ b.  Обязательно ли  c = d?

Прислать комментарий     Решение

Задача 64928

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3-
Классы: 5,6

Волк, Ёж, Чиж и Бобёр делили апельсин. Ежу досталось вдвое больше долек, чем Чижу, Чижу – впятеро меньше, чем Бобру, а Бобру – на 8 долек больше, чем Чижу. Найдите, сколько долек было в апельсине, если Волку досталась только кожура.

Прислать комментарий     Решение

Задача 64932

Тема:   [ Разрезания на параллелограммы ]
Сложность: 3-
Классы: 5,6

На клетчатом листе нарисован прямоугольник 6×7. Разрежьте его по линиям сетки на пять каких-нибудь квадратов.

Прислать комментарий     Решение

Задача 64937

Тема:   [ Уравнения в целых числах ]
Сложность: 3-
Классы: 6,7

В тридевятом царстве есть только два вида монет: 16 и 27 тугриков. Можно ли заплатить за одну тетрадку ценой в 1 тугрик и получить сдачу?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .