ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116978
Тема:    [ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 5,6,7
В корзину
Прислать комментарий

Условие

Автор: Фольклор

Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?


Решение

  Так как среди каждых четырёх носков хотя бы два принадлежали одному ребенку, то детей – не более трёх. Никому из детей не может принадлежать более трёх носков (иначе нашлись бы пять носков, среди которых более трёх принадлежат одному хозяину).
  Всего мама нашла девять носков, поэтому детей не может быть меньше трёх. А значит, в комнате живут трое детей, и каждому принадлежат ровно по три найденных носка.


Ответ

Трое детей, каждому из них принадлежало по три носка.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 9 (2011 год)
Дата 2011-03-6
класс
Класс 7 класс
задача
Номер 7.3

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .