ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30724
Темы:    [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нём
  а) 12 открыток;
  б) 8 открыток;
  в) 8 различных открыток?


Подсказка

а), б) Задача эквивалентна задаче о разложении 12 (8) шаров по 10 ящикам. См. 30717 б).

в) Надо выбрать два вида открыток, которые не будут куплены.


Ответ

а)  ;   б)  ;   в)    способами.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 11
Название Комбинаторика-2
Тема Классическая комбинаторика
задача
Номер 038

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .