ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 35042
УсловиеМожно ли разбить какой-нибудь треугольник на 5 одинаковых
треугольников?
ПодсказкаВ качестве примера можно взять прямоугольный треугольник,
в котором катеты относятся как 1:2.
РешениеПримером является прямоугольный треугольник ABC с катетами AC=1 и BC=2. Укажем нужное разбиение этого треугольника. Проведем высоту CH из вершины C прямого угла. Треугольник ABC при этом разбивается на 2 подобных треугольника ACH и BCH. Коэффициент подобия этих треугольников равен AC/BC=1/2. Далее, треугольник BCH можно разбить средними линиями на 4 равных треугольника, каждый из которых подобен треугольнику BCH с коэффициентом подобия 1/2. В итоге треугольник ABC оказался разбитым на 5 треугольников, равных треугольнику ACH. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке