ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 78539
Условие
В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать,
что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной
и описанной окружностей треугольника.
РешениеПусть D – точка пересечения биссектрисы угла A c описанной окружностью треугольника. По теореме Птолемея AD· BC = AB· CD + AC· BD . Так как BD=CD и BC=(AB+CD)/2 , то AD=2BD . Пусть I – центр вписанной окружности треугольника ABC . Легко проверить, что ID=BD . Поэтому I – середина отрезка AD , откуда следует утверждение задачи. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке