ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 87595
Темы:    [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

Угол между плоскостями равен α . Найдите площадь ортогональной проекции правильного шестиугольника со стороной 1, лежащего в одной из плоскостей, на другую плоскость.
Также доступны документы в формате TeX

Решение

Пусть S – площадь данного правильного шестиугольника, лежащего в одной из данных плоскостей, S1 – площадь его ортогональной проекции на другую плоскость. Так как правильный шестиугольник со стороной a , разбивается большими диагоналями на 6 правильных треугольников со стороной a , то

S = 6· = 6· = .

Следовательно,
S1 = S cos α = · cos α.


Также доступны документы в формате TeX

Ответ

.
Также доступны документы в формате TeX

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 8198

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .