ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для сборки автомобиля Лёше потребовалось купить несколько винтиков и шпунтиков. Когда он подошёл к кассе, выяснилось, что в этот день магазин проводит рекламную акцию, предлагая покупателям или 15-процентную скидку на всю покупку или 50-процентную скидку на шпунтики. Оказалось, что стоимость покупки со скидкой не зависит от выбранного варианта скидки. Сколько денег Лёша первоначально собирался потратить на покупку шпунтиков, если на покупку винтиков он собирался потратить 7 рублей?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 30443  (#011)

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Двое по очереди ставят коней в клетки шахматной доски так, чтобы кони не били друг друга. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30444  (#012)

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Двое по очереди ставят королей в клетки доски 9 × 9 так, чтобы короли не били друг друга. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 30445  (#013)

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8

а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход.

б) Та же игра, но с ладьями.

Прислать комментарий     Решение


Задача 30446  (#014)

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

Дана клетчатая доска 10 × 10. За ход разрешается покрыть любые 2 соседние клетки доминошкой (прямоугольником 1 × 2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Задача 30447  (#015)

Тема:   [ Симметричная стратегия ]
Сложность: 3-
Классы: 6,7,8

В каждой клетке доски 11 × 11 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .