ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что если длины проекций отрезка на две взаимно перпендикулярные прямые равны a и b, то его длина не меньше  (a + b)/$ \sqrt{2}$.
б) Длины проекций многоугольника на координатные оси равны a и b. Докажите, что его периметр не меньше  $ \sqrt{2}$(a + b).

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 87981

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .