ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

Вниз   Решение


Задано прямоугольную таблицу размером M строк на N столбиков. В каждой клеточке записано натуральное число, не превышающее 200. Путник должен пройти по этой таблице из левого верхнего угла в правый нижний, на каждом шаге перемещаясь либо на 1 клеточку направо, либо на 1 клеточку вниз. Очевидно, таких путей много. Для каждого пути можно вычислить сумму чисел в пройденных клеточках. Среди этих сумм, очевидно, есть максимальная.

Будем снисходительными к Путнику, считая <хорошими> не только пути, на которых в точности достигается максимально возможная сумма, а еще и пути, сумма которых отличается от максимальной не более чем на K.

Количество <хороших> путей гарантированно не превышает 109.

Задание

Напишите программу GOODWAYS, находящую значение максимально возможной суммы и количества <хороших> путей.

Входные данные

Первая строка входного файла GOODWAYS.DAT содержит три целых числа M (2≤M≤200), N (2≤N≤200) и K (0≤K≤200). Каждая из последующих M строк содержит N чисел, записанных в соответствующих клеточках.

Выходные данные

Первая строка выходного файла GOODWAYS.SOL должна содержать максимальную возможную сумму; вторая строка - количество маршрутов, сумма чисел которых отличается от максимальной не более чем на K.

Пример входных и выходных данных

GOODWAYS.DAT

GOODWAYS.SOL

2 3 3

1 9 7

2 5 3

20

2

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 107764

Темы:   [ Произвольные многоугольники ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Соображения непрерывности ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Перестройки ]
Сложность: 5-
Классы: 9,10,11

Рассматривается произвольный многоугольник (не обязательно выпуклый).
  а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?
  б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем ⅓ площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .