ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Игра «Жизнь» является упрощенной моделью развития колонии бактерий. Игровое поле для этой игры представляет собой прямоугольник M × N клеток. В начальный момент времени в некоторых клетках находятся бактерии. За один шаг игры некоторые бактерии могут погибнуть, а некоторые родиться на свободных клетках в соответствии со следующими правилами: 
    1) бактерия, у которой есть не более одной соседки, погибает «от скуки»; 
    2) бактерия, у которой есть более трех соседок, погибает «от тесноты»; 
    3) на свободной клетке, у которой есть ровно три соседние бактерии, рождается новая бактерия.
Все эти правила применяются одновременно ко всем клеткам игрового поля. Клетки считаются соседними, если у них есть хотя бы одна общая точка. Напишите программу, которая: 
    по заданной колонии находит ее предка, то есть колонию, чьим следующим поколением она является, либо сообщает, что это невозможно;
    находит колонию, у которой нет предка, и которая погибает не ранее, чем через L шагов, либо сообщает, что такой колонии не существует.

Входные данные

Если во входном файле записана матрица M × N (2 ≤ M, N ≤ 15), то программа должна решать пункт 1 задачи для колонии бактерий, задаваемой этой матрицей. Бактерии обозначаются символом *, а пустые клетки – символом . (точка). Если во входном файле заданы три числа M, N и L (2 ≤ M, N ≤ 10, 0 ≤  L ≤ 10), то программа должна решать пункт 2 для этих параметров.

Выходные данные

Если искомая колония существует, то ее следует вывести в выходной файл в формате, приведенном в описании входных данных к пункту 1. В противном случае ваша программа должна записать в выходной файл сообщение «NOT POSSIBLE».

Пример входного файла для пункта 1

...
***
...


Пример выходного файла для пункта 1

.*.
.*.
.*.


Пример входного файла для пункта 2

2 2 10

Пример выходного файла для пункта 2

*.
**

Вниз   Решение


Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Докажите, что AM – биссектриса угла BAC.

Вверх   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 391]      



Задача 102879

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?
Прислать комментарий     Решение


Задача 103009

Тема:   [ Теория алгоритмов ]
Сложность: 3
Классы: 5,6,7

Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
Прислать комментарий     Решение


Задача 103833

Темы:   [ Математическая логика (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7

На острове Контрастов живут и рыцари, и лжецы. Рыцари всегда говорят правду, лжецы всегда лгут. Некоторые жители заявили, что на острове чётное число рыцарей, а остальные заявили, что на острове нечётное число лжецов. Может ли число жителей острова быть нечётным?

Прислать комментарий     Решение

Задача 103951

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 5,6,7

Можно ли разрезать прямоугольник размерами 78×55 см на прямоугольники 5×11 см?
Прислать комментарий     Решение


Задача 103964

 [Делимость на n]
Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Прислать комментарий     Решение


Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .