ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 65443  (#7.1)

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7,8

Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

Прислать комментарий     Решение

Задача 65444  (#7.2)

Темы:   [ Наглядная геометрия ]
[ Биссектриса угла ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 6,7,8

У листа бумаги только один ровный край. Лист согнули, потом разогнули обратно. A – общая точка ровного края и линии сгиба. Постройте перпендикуляр к этой линии в точке A. Сделайте это без помощи чертёжных инструментов, а лишь перегибая бумагу.

Прислать комментарий     Решение

Задача 65445  (#7.3)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

Автор: Штерн А.С.

Пётр Петрович и Иван Иванович ехали вместе в поезде. Каждый из них сначала смотрел в окно, потом читал газету, потом разгадывал кроссворд и под конец пил чай. Только у Петра Петровича на каждое следующее занятие уходило вдвое больше времени, чем на предыдущее, а у Ивана Ивановича – в 4 раза. Начали смотреть в окно они одновременно и кончили пить чай также одновременно. Что делал Пётр Петрович, когда Иван Иванович приступил к кроссворду?

Прислать комментарий     Решение

Задача 65446  (#7.4)

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

В школе 450 учеников и 225 парт. Ровно половина девочек сидят за одной партой с мальчиками.
Можно ли пересадить учеников так, чтобы ровно половина мальчиков сидела за одной партой с девочками?

Прислать комментарий     Решение

Задача 65452  (#7.5)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

Али-Баба и 40 разбойников делят добычу. Делёж считается справедливым, если любым 30 участникам достаётся в сумме не менее половины добычи. Какая наибольшая доля может достаться Али-Бабе при справедливом дележе?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .