ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Куб со стороной 1 м распилили на кубики со стороной 1 см и положили их в ряд (по прямой). Какой длины оказался ряд?

Вниз   Решение


Двое играют в такую игру. В начале по кругу стоят числа 1, 2, 3, 4. Каждым своим ходом первый прибавляет к двум соседним числам по 1, а второй меняет любые два соседних числа местами. Первый выигрывает, если все числа станут равными. Может ли второй ему помешать?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 73747

Тема:   [ Взвешивания ]
Сложность: 4+
Классы: 7,8,9

На суде в качестве вещественного доказательства предъявлено 14 монет. Эксперт обнаружил, что семь из них — фальшивые, остальные — настоящие, причём узнал, какие именно фальшивые, а какие — настоящие. Суд же знает только, что фальшивые монеты весят одинаково, настоящие монеты весят одинаково, а фальшивые легче настоящих. Эксперт хочет тремя взвешиваниями на чашечных весах без гирь доказать суду, что все обнаруженные им фальшивые монеты действительно фальшивые, а остальные — настоящие. Сможет ли он это сделать?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .