ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Задан неориентированный граф с N вершинами, пронумерованными целыми числами от 1 до N. Напишите программу, которая последовательно решает следующие задачи:
    а) выясняет количество компонент связности графа;
    б) находит и выдает все такие ребра, что удаление любого из них ведет к увеличению числа компонент связности;
    в) определяет, можно ли ориентировать все ребра графа таким образом, чтобы получившийся граф оказался сильно связным (ориентированный граф называется сильно связным, если из любой его вершины можно пройти в любую другую, двигаясь по ребрам вдоль стрелок);
    г) ориентирует максимальное количество ребер, чтобы получившийся граф оказался сильно связным;
    д) определяет минимальное количество ребер, которые следует добавить в граф, чтобы ответ на пункт в) был утвердительным.

Входные данные

Во входном файле записано целое число N (1 ≤ N ≤ 100) и список ребер графа, заданных номерами концевых вершин.

Выходные данные

Ваша программа должна вывести в выходной файл последовательно ответы на пункты a)-д) в следующем формате:
    в первой строке запишите ответ на пункт а);
    во второй строке запишите количество ребер из ответа на пункт б), а в последующих строках выдайте сами эти ребра;
    в следующую строку выведите сообщение «NOT POSSIBLE», если требуемым в пункте в) способом ориентировать граф невозможно, иначе выведите сообщение «POSSIBLE»;
    далее выведите максимальное количество ребер графа, которые можно ориентировать (пункт г); в последующие строки выведите список этих ребер;
    в качестве ответа на пункт д) выведите количество ребер, которые следует добавить в исходный граф, а далее выведите сами эти ребра.
Ребра задаются указанием номеров своих концевых вершин, а при выводе ответа на пункт г) должна быть указана их ориентация (вначале выводится номер начальной вершины, затем – номер конечной). Если ответ на пункт а) отличен от единицы, то пункты в) и г) решать не следует и ответы на них не выводятся. Баллы за пункт в) в случае утвердительного ответа на него начисляются лишь в том случае, если программа правильным образом ориентировала ребра графа (пункт г).

Пример входного файла

4
1 2
2 4
3 4
4 1

Пример выходного файла

1
1
3 4
NOT POSSIBLE
3
1 2
2 4
4 1
1
1 3

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 102884  (#1)

 [Четный граф ]
Тема:   [ Обход графа в глубину ]
Сложность: 3

Неориентированный граф называется четно-нечетным, если найдутся две его вершины, между которыми существует пути как из четного, так и из нечетного числа ребер. Напишите программу, которая:
    a) определяет, является ли заданный граф четно-нечетным;
    б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер.

Входные данные

Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j.

Выходные данные

Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них.

Пример входного файла

3
1 2

Пример выходного файла

NO
2
2 3
Прислать комментарий     Решение


Задача 102885  (#2)

 [Ориентация графа ]
Тема:   [ Обход графа в глубину ]
Сложность: 3+

Задан неориентированный граф с N вершинами, пронумерованными целыми числами от 1 до N. Напишите программу, которая последовательно решает следующие задачи:
    а) выясняет количество компонент связности графа;
    б) находит и выдает все такие ребра, что удаление любого из них ведет к увеличению числа компонент связности;
    в) определяет, можно ли ориентировать все ребра графа таким образом, чтобы получившийся граф оказался сильно связным (ориентированный граф называется сильно связным, если из любой его вершины можно пройти в любую другую, двигаясь по ребрам вдоль стрелок);
    г) ориентирует максимальное количество ребер, чтобы получившийся граф оказался сильно связным;
    д) определяет минимальное количество ребер, которые следует добавить в граф, чтобы ответ на пункт в) был утвердительным.

Входные данные

Во входном файле записано целое число N (1 ≤ N ≤ 100) и список ребер графа, заданных номерами концевых вершин.

Выходные данные

Ваша программа должна вывести в выходной файл последовательно ответы на пункты a)-д) в следующем формате:
    в первой строке запишите ответ на пункт а);
    во второй строке запишите количество ребер из ответа на пункт б), а в последующих строках выдайте сами эти ребра;
    в следующую строку выведите сообщение «NOT POSSIBLE», если требуемым в пункте в) способом ориентировать граф невозможно, иначе выведите сообщение «POSSIBLE»;
    далее выведите максимальное количество ребер графа, которые можно ориентировать (пункт г); в последующие строки выведите список этих ребер;
    в качестве ответа на пункт д) выведите количество ребер, которые следует добавить в исходный граф, а далее выведите сами эти ребра.
Ребра задаются указанием номеров своих концевых вершин, а при выводе ответа на пункт г) должна быть указана их ориентация (вначале выводится номер начальной вершины, затем – номер конечной). Если ответ на пункт а) отличен от единицы, то пункты в) и г) решать не следует и ответы на них не выводятся. Баллы за пункт в) в случае утвердительного ответа на него начисляются лишь в том случае, если программа правильным образом ориентировала ребра графа (пункт г).

Пример входного файла

4
1 2
2 4
3 4
4 1

Пример выходного файла

1
1
3 4
NOT POSSIBLE
3
1 2
2 4
4 1
1
1 3
Прислать комментарий     Решение


Задача 102886  (#3)

 [Кратеры на Луне ]
Темы:   [ Обход графа в глубину ]
[ Динамическое программирование на графах без циклов ]
Сложность: 3+

Пролетающие время от времени в опасной близости от нашего спутника Луны астероиды захватываются ее гравитационным полем и, будучи ничем не задерживаемы, врезаются с огромной скоростью в лунную поверхность, оставляя в память о себе порядочных размеров кратеры приблизительно круглой формы. 

Увлекающийся астрономией профессор З. В. Ездочетов занялся изучением современной карты участка лунной поверхности. Он решил найти на ней максимально длинную цепочку вложенных друг в друга кратеров. Зная о Ваших недюжинных способностях в области построения алгоритмов, за помощью в решении этой непростой задачи он обратился к Вам.

Входные данные

Первая строка входного файла содержит целое число N – количество кратеров, отмеченных на карте (1 ≤ N ≤ 500). Следующие N строк содержат описания кратеров с номерами от 1 до N. Описание каждого кратера занимает отдельную строку и состоит из трех целых чисел, принадлежащих диапазону [-32768, 32767] и разделенных пробелами. Первые два числа представляют собой декартовы координаты его центра, а третье – радиус. Все кратеры различны.

Выходные данные

Первая строка выходного файла должна содержать длину искомой цепочки кратеров, вторая – номера кратеров из этой цепочки, начиная с меньшего кратера и кончая самым большим. Номера кратеров должны быть разделены пробелами. Если существует несколько длиннейших цепочек, следует вывести любую из них.

Пример входного файла

4
0 0 30
-15 15 20
15 10 5
10 10 10

Пример выходного файла

3
3 4 1
Прислать комментарий     Решение


Задача 102887  (#4)

 [Электронная таблица ]
Темы:   [ Обход графа в глубину ]
[ Динамическое программирование (прочее) ]
[ Синтаксический разбор (прочее) ]
Сложность: 3+

Имеется таблица M × N, в каждой ячейке которой записано либо целое число, либо арифметическая формула. В формулах могут присутствовать целые числа, знаки *, /, +, -, (, ), пробелы и ссылки на значения из других ячеек таблицы, записываемые в виде {НомерCтроки, НомерCтолбца} (например, {1,10}). Требуется вычислить значения во всех ячейках заданной таблицы.

Входные данные:

В первой строке входного файла записаны целые числа M и N (1 ≤ M, N ≤ 20). В каждой из последующих M строк содержится описание очередной строки таблицы. Описание состоит из целых чисел и арифметических формул, разделенных символами | (ASCII-код 124). Все числа принадлежат диапазону [-32768, 32767], а длина каждой формулы не превышает 100 символов.

Выходные данные:

Выведите в выходной файл значения всех ячеек таблицы. Значения ячеек каждой строки таблицы должны быть записаны через пробел в отдельной строке выходного файла. Все значения следует выводить с точностью до двух знаков после десятичной точки. Если значение ячейки вычислить невозможно, вместо него следует вывести символ - (ASCII-код 45).

Пример входного файла

2  3
  1      |    {1, 1   }*10        +3 |     -{1,2}/{2,2}
{2,3} |             0                     |           {2,1}

Пример выходного файла

1.00 13.00 -
- 0.00 -
Прислать комментарий     Решение


Задача 102888  (#5)

 [Золотая лихорадка ]
Темы:   [ Динамическое программирование (прочее) ]
[ Обход графа в ширину ]
Сложность: 4

Алхимик Петя изобрел философский камень, с использованием которого можно проводить некоторое множество алхимических реакций по превращению одних веществ в другие. Масса вещества, которое подвергается превращению, и масса каждого образующегося в результате реакции вещества составляет ровно один грамм. Закон сохранения массы при этом может нарушаться, поскольку Пете он неизвестен.

Изначально у Пети имеется один грамм свинца. С помощью философского камня Петя может превратить свой свинец в другие вещества, на которые он потом также сможет воздействовать философским камнем. Выполняя одну за другой алхимические реакции, Петя стремится получить как можно больше золота. 

Требуется написать программу, определяющую по заданному описанию алхимических реакций, выполняемых философским камнем, наибольшее количество золота, которое может получить Петя.

Входные данные

В первой строке входного файла записано целое число K – количество различных веществ, участвующих и образующихся в алхимических реакциях (2 ≤ K ≤ 100). Вторая строка содержит названия этих веществ, разделенные пробелом (в списке обязательно есть свинец и золото). Названия веществ не длиннее 10 букв. 

В третьей строке записано целое число L – количество типов реакций, выполняемых философским камнем (1 ≤ L ≤ 100). Далее идут L описаний этих реакций. Каждое описание реакции состоит из двух строк: первая строка содержит название вещества, которое подвергается превращению, вторая – названия веществ, получающихся в результате реакции.

Выходные данные

Ваша программа должна вывести в выходной файл либо одно целое число – искомое количество граммов золота, либо сообщение «QUANTUM SATIS» (лат. "Сколько нужно"), если Петя может получить любое наперед заданное количество золота.

Пример входного файла

4
свинец золото рога копыта
3
свинец
золото рога копыта
рога
золото копыта
копыта
золото

Пример выходного файла

4
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .