ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На шахматной доске стоит кубик, занимая своим основанием в точности одно из полей доски. На его гранях написаны неотрицательные целые числа, не превосходящие 1000. Кубик можно перемещать на смежные поля, перекатывая через соответствующее ребро в основании. При движении кубика вычисляется сумма чисел, попавших в его основание (каждое число считается столько раз, сколько раз кубик оказывался лежащим на данной грани). Требуется найти такой путь движения кубика между двумя заданными
полями доски, при котором вычисленная сумма будет минимальной. Числа,
стоящие в основании кубика в начальной и конечной позициях, также входят в
сумму.
|
Страница: 1 [Всего задач: 1]
Требуется найти такой путь движения кубика между двумя заданными
полями доски, при котором вычисленная сумма будет минимальной. Числа,
стоящие в основании кубика в начальной и конечной позициях, также входят в
сумму.
Страница: 1 [Всего задач: 1] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|