ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Известна легенда, что в древней Лимонии любой претендент на должность визиря при шахе должен был выдержать следующее испытание. Ему дается доска размером M × M и некоторое количество шахматных фигур: ферзей, ладей, слонов, коней и королей. Претендент должен расставить их на доске таким образом, чтобы ни одна из фигур не била другие фигуры, и все фигуры были выставлены на доске. Если претендент выдерживал испытание, он назначался визирем, а если не выдерживал... то не назначался. Напишите программу, которая будет решать эту головоломку. Входные данные Первое число во входном файле задает размер доски M (2 ≤ M ≤ 12). Следующие 5 целых неотрицательных чисел K, Q, R, B, N задают соответственно количество королей, ферзей, ладей, слонов и коней, которые требуется расставить. Общее количество фигур не превосходит M2 . Фигуры подобраны так, что искомая расстановка существует. Выходные данные Вывести в выходной файл доску с расставленными фигурами в виде M строк по M символов в каждой. Пустые поля обозначаются символом . (точка), поля с королями – K, ферзями – Q, ладьями – R, слонами – B, конями – N. Пример входного файла 4 0 0 4 0 0 Пример выходного файла R... ..R. ...R .R.. Решение |
Страница: 1 2 >> [Всего задач: 9]
Входные данные Во входном файле содержатся (в указанном порядке) целое число N (1 ≤ N ≤ 30) и N пар вещественных чисел, задающих координаты точек. Числа разделяются пробелами и/или символами перевода строки. Выходные данные Первая строка выходного файла должна содержать минимально возможное значение суммарной площади. В каждую из следующих K строк запишите тройку номеров вершин, образующих очередной из треугольников. Номера вершин разделяются пробелом. Пример входного файла 6 0 0 1 0 10 0 0 2 12 0 10 1 Пример выходного файла 2 1 2 4 3 5 6
Требуется определить максимальное количество очков, которое может
набрать игрок в этой игре.
взять число из одного сектора; взять число, равное сумме двух или более чисел в смежных секторах. Из новых чисел составляется наибольшая последовательность подряд идущих чисел, начинающаяся с числа M: (M, M+1, M+2, ..., I). Пример на рисунке показывает, как получить все новые числа от 2 до 21 для приведенных на нем чисел в секторах. Серым цветом выделены суммируемые числа.
Входные данные Первое число во входном файле задает размер доски M (2 ≤ M ≤ 12). Следующие 5 целых неотрицательных чисел K, Q, R, B, N задают соответственно количество королей, ферзей, ладей, слонов и коней, которые требуется расставить. Общее количество фигур не превосходит M2 . Фигуры подобраны так, что искомая расстановка существует. Выходные данные Вывести в выходной файл доску с расставленными фигурами в виде M строк по M символов в каждой. Пустые поля обозначаются символом . (точка), поля с королями – K, ферзями – Q, ладьями – R, слонами – B, конями – N. Пример входного файла 4 0 0 4 0 0 Пример выходного файла R... ..R. ...R .R..
Входные данные Входной файл содержит единственную строку с записью ребуса. Длина строки не превышает 30 символов. Выходные данные Первая строка выходного файла должна содержать число возможных решений ребуса, а остальные – список решений в алфавитном порядке. Каждое решение должно быть выведено не более одного раза. Пример входного файла ЛЕТО+ЛЕТО=ПОЛЕТ Пример выходного файла 1 8947+8947=17894
Страница: 1 2 >> [Всего задач: 9] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|