Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

На сторонах AB и BC параллелограмма ABCD выбраны точки A1 и C1 соответственно. Отрезки AC1 и CA1 пересекаются в точке P . Описанные окружности треугольников  AA1P и CC1P вторично пересекаются в точке Q , лежащей внутри треугольника  ACD . Докажите, что PDA= QBA .

Вниз   Решение


Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причем BM = 3AM и CN = 3AN. Докажите, что MN || BC и найдите MN, если BC = 12.

ВверхВниз   Решение


Можно ли четырьмя плоскостями разрезать куб с ребром 1 на части так, чтобы для каждой из частей расстояние между любыми двумя её точками было:
  а) меньше 4/5;
  б) меньше 4/7?
Предполагается, что все плоскости проводятся одновременно, куб и его части не двигаются.

ВверхВниз   Решение


Автор: Фольклор

На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3?

ВверхВниз   Решение


Найти скорость и длину поезда, если известно, что он проходит мимо неподвижного наблюдателя в течение 7 секунд и затратил 25 секунд, чтобы проехать вдоль платформы длиной в 378 м.

ВверхВниз   Решение


Автор: Фольклор

В треугольнике АВС проведена биссектриса BD. Докажите, что АВ > AD.

ВверхВниз   Решение


Вдоль дорожки между домиками Незнайки и Синеглазки росли в ряд цветы: 15 пионов и 15 тюльпанов вперемешку. Отправившись из дома в гости к Незнайке, Синеглазка поливала все цветы подряд. После 10-го тюльпана вода закончилась, и 10 цветов остались не политыми. Назавтра, отправившись из дома в гости к Синеглазке, Незнайка собирал для неё все цветы подряд. Сорвав 6-й тюльпан, он решил, что для букета достаточно. Сколько цветов осталось расти вдоль дорожки?

ВверхВниз   Решение


В вершинах шестиугольника ABCDEF (см. рис.) лежали 6 одинаковых на вид шариков: в A — массой 1 г, в B — 2 г, ..., в F — 6 г. Шутник поменял местами два шарика в противоположных вершинах. Имеются двухчашечные весы, позволяющие узнать, в какой из чаш масса шариков больше. Как за одно взвешивание определить, какие именно шарики переставлены?

ВверхВниз   Решение


  Пусть 2S – суммарный вес некоторого набора гирек. Назовём натуральное число k средним, если в наборе можно выбрать k гирек, суммарный вес которых равен S. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?

ВверхВниз   Решение


Докажите, что если треугольник не тупоугольный, то сумма трёх его медиан не меньше, чем учетверённый радиус описанной окружности.

ВверхВниз   Решение


Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 104057

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Доктор Айболит раздал четырём заболевшим зверям 2006 чудодейственных таблеток. Носорог получил на одну больше, чем крокодил, бегемот на одну больше, чем носорог, а слон — на одну больше, чем бегемот. Сколько таблеток придётся съесть слону?
Прислать комментарий     Решение


Задача 104058

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 6,7,8

Разрежьте фигуру (см. рисунок) на две одинаковые (совпадающие при наложении) части.

Прислать комментарий     Решение

Задача 104059

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 2
Классы: 6,7,8

Саша пригласил Петю в гости, сказав, что живёт в 10-м подъезде в квартире №333, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом девятиэтажный. На какой этаж ему следует подняться? (На каждом этаже число квартир одинаково, номера квартир в доме начинаются с единицы.)

Прислать комментарий     Решение

Задача 104063

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Обыкновенные дроби ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 6,7,8

Винни-Пух и Пятачок поделили между собой торт. Пятачок захныкал, что ему досталось мало. Тогда Пух отдал ему треть своей доли. От этого у Пятачка количество торта увеличилось втрое. Какая часть торта была вначале у Пуха и какая у Пятачка?

Прислать комментарий     Решение

Задача 104064

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6,7

Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .