ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Для любых n вещественных чисел a1, a2, ..., an существует такое натуральное  k ≤ n,  что каждое из k чисел ak,  ½ (ak + ak–1),
⅓ (ak + ak–1 + ak–2),  ...,  1/k (ak + ak–1 + ... + a2 + a1)  не превосходит среднего арифметического c чисел a1, a2, ..., an.

Вниз   Решение


Найдите точку максимума функции y = (x2-14x+14)ex+14 .

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 112571

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите точку максимума функции y = (x2-14x+14)ex+14 .
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .