ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Несколько (конечное число) точек плоскости окрашены в четыре цвета, причём есть точки каждого цвета. Никакие три из этих точек не лежат на одной прямой. Докажите, что найдутся три разных (возможно, пересекающихся) треугольника, каждый из которых имеет вершины трёх разных цветов и не содержит внутри себя окрашенных точек.

Вниз   Решение


Какие-то две команды набрали в круговом волейбольном турнире одинаковое число очков.
Докажите, что найдутся такие команды А, В и С, что А выиграла у В, В выиграла у С, а С выиграла у А.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 30825  (#047)

Темы:   [ Ориентированные графы ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

В некоторой стране каждый город соединён с каждым дорогой с односторонним движением.
Докажите, что найдётся город, из которого можно добраться в любой другой.

Прислать комментарий     Решение

Задача 30826  (#048)

Тема:   [ Ориентированные графы ]
Сложность: 3+
Классы: 8

Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда А сильнее команды B, если либо А выиграла у B, либо существует такая команда C, что А выиграла у C, а C – у B.
  а) Докажите, что есть команда, которая сильнее всех.
  б) Докажите, что команда, выигравшая турнир, сильнее всех.

Прислать комментарий     Решение

Задача 30827  (#049)

Темы:   [ Ориентированные графы ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

В одном государстве 100 городов и каждый соединён с каждым дорогой с односторонним движением. Докажите, что можно поменять направление движения не более чем на одной дороге так, чтобы от каждого города можно было доехать до любого другого.

Прислать комментарий     Решение

Задача 30828  (#050)

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 6,7

20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

Прислать комментарий     Решение

Задача 30829  (#051)

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 8

Какие-то две команды набрали в круговом волейбольном турнире одинаковое число очков.
Докажите, что найдутся такие команды А, В и С, что А выиграла у В, В выиграла у С, а С выиграла у А.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .