ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком `` плюс'', а участки пути, по которым мы удалялись от центра, — со знаком `` минус''. Докажите, что для любого такого пути алгебраическая сумма длин участков пути, взятых с указанными знаками, равна нулю. (Эту задачу не решил никто из участников олимпиады.)

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 77895

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 8,9

Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком `` плюс'', а участки пути, по которым мы удалялись от центра, — со знаком `` минус''. Докажите, что для любого такого пути алгебраическая сумма длин участков пути, взятых с указанными знаками, равна нулю. (Эту задачу не решил никто из участников олимпиады.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .