Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей?

Вниз   Решение


Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1P2S2 + P3S3 + P4S4.

ВверхВниз   Решение


Каждая грань выпуклого многогранника – многоугольник с чётным числом сторон.
Обязательно ли его рёбра можно раскрасить в два цвета так, чтобы у каждой грани было поровну рёбер разных цветов?

ВверхВниз   Решение


На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что   KL || MN  и
KMNL.  Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.

ВверхВниз   Решение


p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и  a1 > p.
Доказать, что если p – простое число, то разность прогрессии делится на p.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78037

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и  a1 > p.
Доказать, что если p – простое число, то разность прогрессии делится на p.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .